多芯光纤注人光功率分布比例控制方法

张 羽 刘志海 杨 军 苑立波

(哈尔滨工程大学理学院光子科学与技术研究中心,黑龙江哈尔滨 150001)

摘要 通过将单芯单模光纤与多芯光纤纤芯对准熔接后,再在多芯光纤任意位置进行热熔融拉锥,实现多芯光纤 光功率的高效耦合注入和光功率在各个纤芯中分布比例的控制,解决了由于多芯光纤结构特殊引起的光源光功率 难于直接注入的问题。基于光纤耦合模式理论建立多芯光纤各纤芯之间的耦合模方程,得到各个纤芯中光功率变 化与耦合长度之间的变化曲线,并与实际耦合实验结果对比,验证此方法的可行性。研究结果可为多芯光纤光学 器件的发展提供潜在的应用价值。

关键词 光纤光学;多芯光纤;光功率分布控制;耦合模式理论;光纤器件 中图分类号 TN252;TN929.11 **文献标识码** A **doi**: 10.3788/CJL201138.1205002

An Optical Power Coupling Ratio Control Approach among Multi Cores in a Multi-Core Fiber

Zhang Yu Liu Zhihai Yang Jun Yuan Libo

(Photonics Research Center, College of Science, Harbin Engineering University, Harbin, Heilongjiang 150001, China)

Abstract An improved method to control the incident light power distribution ratio in each core of a multi-core optical fiber is proposed. This method is realized by tapering the multi-core fiber to be a bi-tapered shape after fusing the multi-core fiber with a normal single mode fiber on the condition of core alignment. Based on a coupling theoretical model and analysis, the controlling method is introduced, and the results are demonstrated by both theory and experiment. This incident power distribution controlling method may provide a helpful and potential application prospect for multi-core optical fibers devices and sensors.

Key words fiber optics; multi-core fiber; optical power distribution control; coupling mode theory; optical fiber devices

OCIS codes 060.2270; 060.2310; 060.2360

1 引 言

微结构多芯光纤是一种特殊的光纤,与常规标 准光纤相比,多芯光纤在 125 μm 的包层空间中排 列了多根纤芯,使得多芯光纤可以实现单芯光纤无 法实现的多种功能。例如可利用多芯光纤制备光纤 激光器^[1,2]、光纤放大器^[3,4]、集成式光纤干涉 仪^[5,6],温度或应力传感器^[7,8]等光通信和传感领域 的多种光学元件,另外近年来生物化学、生物医学等 研究领域也应用到多种新型结构的微结构多芯光 纤^[9~11]。因此,研究多芯光纤具有十分重要的理论 和实际意义。

尽管多芯光纤可以有无限的发展空间,但多芯 光纤得以广泛应用的前提是人们能够把光源光功率 按需要注入到各个纤芯中。而多芯光纤包层直径 125 μm,与标准单芯光纤相比,在这狭小空间中,分 布着多个纤芯,因此,不可能用传统的光纤直接对接

收稿日期: 2011-08-02; 收到修改稿日期: 2011-09-20

基金项目:国家 973 计划(2010CB334701)、国家 863 计划(2010AA8092208)和国家自然科学基金(60927008,60877046, 61077062,61107069)资助课题。

作者简介:张 羽(1980—),女,博士研究生,讲师,主要从事光纤光镊、光纤传感等方面的研究。 E-mail: zhangy331@yahoo.com.cn

导师简介:苑立波(1942—),男,教授,博士生导师,主要从事纤维集成光学、光纤传感等方面的研究。 E-mail: lbyuan@vip. sina. com 的方法实现光源的注入。为了能解决这个问题,苑 立波等[12.13] 提出一种方法,将标准单芯光纤与多芯 光纤进行焊接,并在焊点处进行热熔融拉锥,以实现 光源光功率的耦合注入,之后他们又发展了理论模 型^[14,15]以讨论这种方法耦合效率的影响因素等问 题。虽然这种方法用来实现光源光功率的注入可 行,但是使用起来存在一些困难。使用这种方法,影 响耦合效率的关键因素有二:1)确保在焊点处进行 拉锥,即保证焊点为拉制双锥区的中心,2)确保拉 制双锥区域光纤双锥形状具有良好的对称性,对称 性越好,耦合效率也就越高。但是在实际操作时,需 要先在焊接机上将两种光纤焊接,再将其移到光纤 拉锥机上进行拉锥,这样很难在拉锥机上再次寻找 定位焊点,即难于确保在焊点处进行拉锥;其次,由 于一边是标准单模光纤,另一边为多芯光纤,两种光 纤的材质、温度的敏感性和粘滞程度也不相同,所以 热熔融拉锥后双锥区的对称性会受到影响。这都影 响实际操作中光源光功率的有效注入。基于此,本 文提出一种改进的光纤耦合方法,在弥补上述缺陷 的同时也可以方便地控制多芯光纤各个纤芯中的光 功率分布比例。这种方法为多芯光纤在标准光纤系 统中便捷使用提供可能和帮助,是多芯光纤得以在 实际应用领域,例如光学器件、锁相激光器、集成于 涉仪和其他生化传感器应用的重要前提与关键。

2 耦合方法

结合图 1,以三芯光纤为例,介绍改进的光源光 功率耦合控制方法。

步骤1:多芯光纤与单芯光纤纤芯对准焊接。

在焊接机中调节两根光纤的相对位置,使单模 光纤的纤芯与多芯光纤的一个纤芯对准,尽量多地 将光源光功率注入到多芯光纤的一个纤芯中,然后 调整确定合适的焊接参数进行两种光纤的熔接。

步骤2:热熔融拉锥。

与文献[12]不同,这种改进的方法可以在焊接 后的三芯光纤的任意位置进行拉锥,无需费力寻找 焊点,只需要适当降低拉锥速度,方便观察功率分配 比例,当功率分布比例满足实验要求时停止拉锥即可 (此处,选择三个纤芯分布相等时停止拉锥)。

3 多芯光纤耦合理论

根据光波导耦合理论^[16],当两个纤芯离得足够 近时,两个纤芯中的基模会由消逝场转变为耦合模, 实现光功率由一个纤芯向另一个纤芯的耦合。其耦 合效率与光源光波长、纤芯之间的距离和相互作用 长度等因素有关,因此得到三纤芯呈正三角形分布 的三芯光纤的模式耦合方程可表示为

$$\frac{\mathrm{d}a_{m}(z)}{\mathrm{d}z} = -\,\mathrm{j}\beta_{m}a_{m}(z) + \mathrm{j}\sum_{l=1}^{3}k_{ml}a_{l}(z), \ m = 1, 2, 3$$
(1)

式中 $a_m(z) = A_m(z) \exp(-j\beta_m z)$,是耦合光波的模式函数,表示由第m个纤芯向其他纤芯耦合, β_m 代表第m个纤芯的传输常数, k_m 是从纤芯m向l的耦合系数。

因为三个纤芯的材质和结构相同,传输常数 β_m 也相同。但对于实际的三芯光纤,三个纤芯之间的 距离无法保证呈精确的正三角形分布,即三个纤芯 之间的距离并不完全相等,所以耦合模方程可以推 导为(忽略自耦)

$$\frac{\mathrm{d}}{\mathrm{d}z} \begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \end{bmatrix} = -j\beta \begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \end{bmatrix} + j \begin{bmatrix} k_{12}a_{2} + k_{13}a_{3} \\ k_{21}a_{1} + k_{23}a_{3} \\ k_{31}a_{1} + k_{32}a_{2} \end{bmatrix} = -j\beta \begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \end{bmatrix} + j \begin{bmatrix} k_{1}a_{2} + k_{2}a_{3} \\ k_{1}a_{1} + k_{3}a_{3} \\ k_{2}a_{1} + k_{3}a_{2} \end{bmatrix}, \quad (2)$$

式中 $k_{12} = k_{21} = k_1, k_{13} = k_{31} = k_2, k_{23} = k_{32} = k_3$ 。 由上述条件与方程组,解得各纤芯功率为

$$p_{1}(z) = [(l_{1} - l_{2})\cos(\gamma_{1}z) + (l_{3} - l_{4})\cos(\gamma_{2}z) + (l_{5} - l_{6})\cos(\gamma_{3}z)]^{2} + [(l_{1} + l_{2})\sin(\gamma_{1}z) + (l_{3} + l_{4})\sin(\gamma_{2}z) + (l_{5} + l_{6})\sin(\gamma_{3}z)]^{2}$$

$$p_{2}(z) = [t_{1}(l_{1} + l_{2})\cos(\gamma_{1}z) + t_{3}(l_{3} + l_{4})\cos(\gamma_{2}z) + t_{5}(l_{5} + l_{6})\cos(\gamma_{3}z)]^{2} + t_{5}(l_{5} + l_{6})\cos(\gamma_{3}z)]^{2}$$

$$\begin{bmatrix} t_1(l_1-l_2)\sin(\gamma_1 z) + t_3(l_3-l_4)\sin(\gamma_2 z) + t_5(l_5-l_6)\sin(\gamma_3 z) \end{bmatrix}^2 \\ p_3(z) = \begin{bmatrix} t_2(l_1+l_2)\cos(\gamma_1 z) + t_4(l_3+l_4)\cos(\gamma_2 z) + t_6(l_5+l_6)\cos(\gamma_3 z) \end{bmatrix}^2 + \\ \begin{bmatrix} t_2(l_1-l_2)\sin(\gamma_1 z) + t_4(l_3-l_4)\sin(\gamma_2 z) + t_6(l_5-l_6)\sin(\gamma_3 z) \end{bmatrix}^2, \quad (3) \\ \vec{x} \oplus t_1 = \frac{k_1^2 k_3}{k_2(k_3^2-2k_1^2)}, t_2 = \frac{k_2^2 k_3}{k_1(k_3^2-2k_2^2)}, t_3 = \frac{k_3(k_2^2-2k_1^2)}{k_1^2 k_2}, t_4 = -\frac{k_3}{k_1}, t_5 = -\frac{k_3}{k_2}, t_6 = \frac{k_3(k_1^2-2k_2^2)}{k_1 k_2^2}; \gamma_1 = \sqrt{k_1^2+k_2^2}, \gamma_2 = \sqrt{k_1^2+k_3^2}, \gamma_3 = \sqrt{k_2^2+k_3^2}; l_1 = t_3 t_6, l_2 = -t_4 t_5, l_3 = t_2 t_5, l_4 = -t_1 t_6, l_5 = t_1 t_4, l_6 = -t_2 t_3. \end{bmatrix}$$

耦合系数 k₁,k₂ 和 k₃ 可以由材料和光纤结构计 算得到^[16],进而可以获得如图 2 所示的 P-z (功率-耦合长度)变化曲线。因为三个纤芯之间的距离并 不完全相同,所以纤芯 2 和 3 的功率曲线没有重合。

由图 2 可以看出,可以在光功率满足需求的任 意时刻停止拉锥,以达到控制多芯光纤各纤芯中光 功率分布比例控制的目的。例如,结合图 2,在耦合 长度达到 1500 μm 时停止拉锥,三个纤芯之间的功 率比大致可控制在 1:2:7;在耦合长度达到1600 μm 时停止拉锥,三个纤芯之间的功率比可控制为 1:1: 1。这意味着可以通过这种方法控制注入光功率在 多芯光纤各个纤芯中的分光比。

Fig. 2 Theoretical results of powers change in three cores

4 耦合实验

实验所用三芯光纤是一种同一包层中包含三个 纤芯的特种光纤,其剖面结构如图 3 所示。其包层 直径为 125 μ m,纤芯直径均为 3.7 μ m,三个纤芯分 布近似呈正三角形分布,纤芯 1 和 2 之间的距离为 54.9 μ m,纤芯 1 和 3 之间的距离为 54.1 μ m,纤芯 2 和 3 之间的距离为 51.4 μ m。纤芯折射率均为 1.4681,包层折射率为 1.4572。

光功率耦合与控制实验装置如图 1 所示。实验 中使用波长为 650 nm 的激光二极管(LD)光源,显微 镜和 CCD(Micronviewer 7290A, Electrophysics, U. S. A.)视频监测装置置于多芯光纤另一端进行输出

图 3 三芯光纤剖面结构示意图 Fig. 3 Profile photo of the three-core fiber 光功率变化监测。

单模光纤和多模光纤采用光纤熔接机(KL-260B)进行纤芯对准焊接,然后将焊接好的光纤置 于拉锥机焊接槽中固定,此时在 CCD 看到如 图 4(a)所示的一个光斑。此过程中需要调节合适 的光纤焊接参数,在焊接机观测窗口调试,调节至光 纤焊接过程中光纤形态无明显变化即可满足耦合效 率的实验要求。此后在拉锥机上进行热熔融拉锥, 过程中保持观测 CCD 中光功率改变,当三个纤芯功 率接近相等时停止拉锥,视频截图如图 4(b)所示, 调整光纤出射端与显微镜透镜之间的距离得到远场 干涉图如图 4(c)所示。

图 4 功率耦合结果视频截图。(a)拉锥之前; (b)拉锥停止后;(c)远场干涉图

Fig. 4 Images of coupling results. (a) Before drawing;(b) after drawing; (c) far field interference

利用 CCD 视频记录功能记录下耦合过程,采用 图像处理技术得到耦合过程中功率变化曲线如图 5 所示。

图 5 同样显示可以在耦合过程中控制各个纤芯 中光功率的分布比例。与图 2 相比,二者在不同的 耦合长度下得到不尽相同的光功率分布比例,这是 由于有很多因素影响实验操作结果,例如氢氧焰的 温度稳定性、气流对氢氧焰的影响、拉锥过程中光纤 真实的形变情况和其他原因等。可是这些细微的差

图 5 三芯光纤光功率变化实验记录结果

Fig. 5 Experimental results of powers in three cores 距并不影响本文方法的有效性,仍然可以通过这种 方法来实现多芯光纤光功率的有效注入和各纤芯之 间光功率分布比例的控制。

5 结 论

这种改进的控制光源注入光功率的方法可以有 效地解决多芯光纤光源光功率有效注入的问题。

与文献[12,13]相比,多芯光纤所有纤芯在同一 个包层中,而且纤芯的材料又基本相同,所以耦合双 锥区的形状可以十分对称,耦合效率可以大幅提高。 只需适当减慢拉锥速度,方便观察纤芯功率变化及 时停止拉锥即可。但是需要注意的是,由于单芯光 纤与多芯光纤之间进行纤芯对准焊接,对光纤包层 而言属于错位连接,使得光纤表面不是很平滑,容易 断裂,因此需要注意封装保护焊点。

结合图 5 可见,以拉伸长度为 1350 µm 为例, 三个纤芯的光功率约为 0.3,0.3 和 0.25 单位功率, 耦合效率达 85%。可见,只要保证在第一次耦合效 率达到要求时停止拉锥,即可保证耦合效率,尽量降 低损耗。

这种改进的耦合方法可以有效地提高耦合效 率,实现多芯光纤各个纤芯中光功率分布比例的控 制。更进一步而言,这种改进的方法为多芯光纤制 备成标准器件、与标准光纤系统连接提供可能,同时 为多芯光纤发展锁相激光器、集成式光纤干涉仪和 各种传感器等应用提供前提。

参考文献

- 1 M. Kochanowicz, D. Dorosz, J. Zmojda *et al.*. Beam quality of multicore fibre lasers[J]. Acta Phys. Pol., A, 2010, 118(6): 1177~1182
- 2 A. S. Kurkov, S. A. Babin, I. A. Lobach *et al.*, Mechanism of the mode coupling in multi-core fiber lasers [J]. Opt. Lett., 2008, 33(1): 61~63
- 3 N. N. Elkin, A. P. Napartovich, V. N. Troshchieva et al.. Mode competition in multi-core fiber amplifier [J]. Opt. Commun., 2007, 277(2): 390~396
- 4 C. de Matos, J. Taylor. Multi-kilowatt all-fiber integrated chirped-pulse amplification system yielding 40 × pulse compression using air-core fiber and conventional erbium-doped fiber amplifier[J]. Opt. Express, 2004, 12(3): 405~409
- 5 Dong Bo, Zhou Dapeng, Wei Li *et al.*. Temperature-and phaseindependent lateral force sensor based on a core-offset multi-mode fiber interferometer [J]. *Opt. Express*, 2008, **16** (23): 19291~19296
- 6 Feng Suchun, Li Honglei, Xu Ou *et al.*. Compact in-fiber Mach-Zehnder interferometer using a twin-core fiber[C]. SPIE, 2009, 7630: 76301R
- 7 Tadamichi Mawatari, Drew Nelson. A multi-parameter Bragg grating fiber optic sensor and triaxial strain measurement [J]. Smart Mater. Struct., 2008, 17(3): 035033
- 8 Špacková Barbora, Piliarik Marek, Kvasnicka Pavel *et al.*. Novel concept of multi-channel fiber optic surface plasmon resonance sensor[J]. Sens. Actuators, B: Chemical, 2009, **139** (1): 199~203
- 9 Atsushi Seki, Hisakazu Katakura, Toshinori Kai et al.. A hetero-core structured fiber optic pH sensor [J]. Anal. Chim. Acta, 2007, 582(1): 154~157
- 10 Zhang Youlin, Zeng Qinghui, Sun Yajuan et al.. Multi-targeting single fiber-optic biosensor based on evanescent wave and quantum dots[J]. Biosens. Bioelectron., 2010, 26(1): 149~154
- 11 S. Lemire-Renaud, M. Rivard, M. Strupler *et al.*. Double-clad fiber coupler for endoscopy[J]. *Opt. Express*, 2010, 18(10): 9755~9764
- 12 Libo Yuan, Zhihai Liu, Jun Yang. Coupling characteristics between single-core fiber and multicore fiber [J]. Opt. Lett., 2006, 31(22): 3237~3239
- 13 Zhu Xiaoliang, Yuan Libo. Coupling approach and mechanism on single core fiber and capillary optical fiber[J]. *Chinese J. Lasers*, 2010, 38(5): 0505009
 朱晓亮,苑立波.单芯光纤与毛细管光纤的耦合方法及其机理 [J].中国激光,2010,38(5): 0505009
- 14 Xiaoliang Zhu, Liao Yuan, Jun Yang et al.. Coupling model of standard single-mode and capillary fiber[J]. Appl. Opt., 2009, 48(29): 5624~5628
- 15 Zhu Xiaoliang, Yuan Libo, Liu Zhihai et al.. Coupling theoretical model between single-core fiber and twin-core fiber [J]. J. Lightwave Technol., 2009, 27(23): 5235~5239
- 16 A. W. Snyder, J. D. Love. Optical Waveguide Theory [M]. Bristol J. W. Arrowsmith Ltd., 1983. 532~546

栏目编辑: 殷建芳